skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Evans, Dafydd Gwyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The North Atlantic meridional overturning circulation and its variability are examined in terms of the overturning in density space and diapycnal water mass transformation. The magnitude of the mean overturning is similar to the surface water mass transformation, but the density and properties of these waters are modified by diapycnal mixing. Surface waters are progressively densified while circulating cyclonically around the subpolar gyre, with the densest waters and deepest convection occurring in the Labrador Sea and Nordic Seas. The eddy-driven interaction between the convective interior and boundary currents is a key to the export of dense waters from marginal seas. Due to the multitude of pathways of dense waters within the subpolar gyre, as well as mixing with older waters, waters exiting the subpolar gyre have a wide range of ages, with a mean age on the order of a decade. As a result, interannual changes in water mass transformation are mostly balanced locally and do not result in changes in export to the subtropics. Only persistent changes in water mass transformation result in changes in export to the subtropics. The dilution of signals from upstream water mass transformation suggests that variability in export of dense waters to the subtropics may be controlled by other processes, including interaction of dense waters with the energetic upper ocean. This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’. 
    more » « less
  2. Abstract. The overturning streamfunction as measured at the OSNAP (Overturning in the Subpolar North Atlantic Program) mooring array represents the transformation of warm, salty Atlantic Water into cold, fresh North Atlantic Deep Water (NADW). The magnitude of the overturning at the OSNAP array can therefore be linked to the transformation by air–sea buoyancy fluxes and mixing in the region north of the OSNAP array. Here, we estimate these water mass transformations using observational-based, reanalysis-based and model-based datasets. Our results highlight that air–sea fluxes alone cannot account for the time-mean magnitude of the overturning at OSNAP, and therefore a residual mixing-driven transformation is required to explain the difference. A cooling by air–sea heat fluxes and a mixing-driven freshening in the Nordic Seas, Iceland Basin and Irminger Sea precondition the warm, salty Atlantic Water, forming subpolar mode water classes in the subpolar North Atlantic. Mixing in the interior of the Nordic Seas, over the Greenland–Scotland Ridge and along the boundaries of the Irminger Sea and Iceland Basin drive a water mass transformation that leads to the convergence of volume in the water mass classes associated with NADW. Air–sea buoyancy fluxes and mixing therefore play key and complementary roles in setting the magnitude of the overturning within the subpolar North Atlantic and Nordic Seas. This study highlights that, for ocean and climate models to realistically simulate the overturning circulation in the North Atlantic, the small-scale processes that lead to the mixing-driven formation of NADW must be adequately represented within the model's parameterisation scheme. 
    more » « less